Determine the dates of DST and EST. 4/28/2020

This python function, $\boldsymbol{d s t}(u t c)$, calculates the start date of Daylight savings time and the start date of Eastern standard time, for the date entered.

DST begins on the second Sunday in March and Ends on the first Sunday in November.
Today's date is entered as a string in the format of yyyy-mm-dd.
The year, month and date are extracted and assigned to the variable tday.
The algorithm to find the start and end date of DST is as follows:
Find the number of the day of January first jan1=date($\mathbf{y}, \mathbf{1}, \mathbf{1})$ of the current year.
Find the day of the week for March 1.
Find the date of the second Sunday.
Find the number of the day for the second Sunday in March, DST start.
Find the day of the week for November 1.
Find the date of the first Sunday.
Find the number of the day for the first Sunday in November, EST start.
If the number of the day of today falls within DST start and EST start, today is on DST.
Otherwise, today is on EST

See Appendix 1 for all of the options of when DST starts and when EST starts.

The function imports the date functions from the standard library.
In Linux each day is assigned a number beginning on January 1, 1970
The number of the January 1 is assigned the variable jan1.
jan1 = date(yr,1,1)

It generates three dictionaries. The dst\{\} dictionary and the est $\}$ dictionaly contain the offset of the first day of the month to the start of DST in March and the start of EST in November. See Appendix 1.

The dow\{\} dictionary shows the days of the week based on the numeric value from datetime. 0 is Sunday and 6 is Saturday.

The current date gpsd.utc is in the format of yyyy-mm-dd.
The yr , mon, and da variables are extracted from gpsd.utc.

```
yr = int(gpsd.utc)[0:4])
```

As an example, if gpsd = 2020-03-17, $\mathrm{yr}=2020$
mon = int(gpsd.utc)[5:7])
$d a=\operatorname{int}((g p s d[8: 10])$

Today is the variable tday.

$$
t d a y=d a t e(y r, \min , d a)
$$

Today's day of the week is dayofweek
The number for the day of January 1 of the year above is assigned to the variable jan1.
Jan1 = date(yr,1,1)
The day of the week of March 1, of the year above is assigned to the variable mar1.
mar1 = datetime.date(yr, 3, 1).weekday() \# days 0-6
Similarly, for November 1.
From the $\boldsymbol{d s t r}\}$ and est $\}$ dictionaries the starting dates for daylight savings time and eastern standard time are the variables dst_start and est_start.
dst_start = dst.get(mar1) \# This is the offset from Mar 1
est_start = est.get(nov1)
The number of the starting dates for daylight savings time and eastern standard times are:

```
start_dst= int((date(yr,3,dst_start)-jan1).days)
start_est = int((date(yr,11,est_start)-jan1).days)
```

Finally the timetag, either DST or EST is determined by:

```
if ttday-start_dst <0 or start_est - ttday <=0:
        tag= 'EST'
    else:
        tag ='DST'
    print 'Our time zone is on ',tag
    timetag = tag
    return (timetag)
```

An interesting observation regarding calendars is that March 1 and November 1, always occur on the same day of the week, regardless of the year.

Listing of $d s t(x)$

```
def dst(utc):
    ####
                ###Finds the start of EST and DST from today's date
        import datetime
        from datetime import date
    dst = {0:14,1:13,2:12,3:11,4:10,5:9,6:8} # off-set from Mar 1 to start
of DST
    est = {0:7,1:6,2:5,3:4,4:3,5:2,6:1} # off_set from Nov 1 to start of
EST
    dow =
{0:'Monday',1:'Tuesday',2:'Wednesday',3:'Thursday',4:'Friday',5:'Saturday'
,6:'Sunday'}
    xxx = gpsd.ut
    yr = int(xxx[0:4])
    mon = int(xxx[5:7])
    da = int(xxx[8:10])
    tday =date(yr,mon,da)
    dayofweek = datetime.date(yr, mon, da).strftime("%A")
    # find Jan 1 of year
    jan1 = date(yr,1,1)
    #find mar1
    mar1 = datetime.date(yr, 3, 1).weekday()# days 0-6
    nov1 = datetime.date(yr, 11,1).weekday()
    print 'March 1 is on a :', dow.get(marl)
    print 'November 1 is on a :', dow.get(nov1)
    dst_start = dst.get(mar1) # This is the offset from Mar 1
    est_start = est.get(nov1)
    print 'Today is :',xxx
    print 'Today is ',dayofweek,' ',tday
    print 'Daylight savings time starts on Sunday March' ,
dst.get(mar1),'th in ',yr
    print 'Estern Standard time starts on Sunday
November',est.get(nov1),'th in ',yr
    print xxx
    yr= int(xxx[0:4])
    mon = int(xxx[5:7])
    da = int(xxx[8:10])
    tday =date(yr,mon,da)
    dayofweek = datetime.date(yr, mon, da).strftime("%A")
    # find Jan 1 of year
    jan1 = date(yr,1,1)
```

```
    #find mar1
    mar1 = datetime.date(yr, 3, 1).weekday()# days 0-6
    nov1 = datetime.date(yr, 11,1).weekday()
    print 'March 1 is on a :', dow.get(mar1)
    print 'November 1 is on a :', dow.get(nov1)
    dst_start = dst.get(mar1) # This is the offset from Mar 1
    est_start = est.get(nov1)
    print 'Today is :',xxx
    print 'Today is ',dayofweek,' ',tday
    print 'Daylight savings time starts on Sunday March' ,
dst.get(mar1),'th in ',yr
    print 'Estern Standard time starts on Sunday
November',est.get(nov1),'th in ',yr
    ttday =int((tday-jan1).days) # Number of days between today and 1/1
    print dst_start
    print est_start
    print 'Number of days from Jan 1 to today ;',ttday
    print 'tday: ',tday
    print date(yr,3,dst_start)
    print date(yr,11,est_start)
    start_dst= int((date(yr,3,dst_start)-jan1).days)
    start_est = int((date(yr,11,est_start)-jan1).days)
    print start_dst
    print start_est
    if ttday-start_dst <0 or start_est - ttday <=0:
        tag= 'EST'
    else:
        tag ='DST'
print 'Our time zone is on ',tag
timetag = tag
return (timetag)
```


The start of Daylight Savings Time is the second Sunday in March

		Sun	Mo n	$\begin{aligned} & \mathrm{Tu} \\ & \mathrm{e} \end{aligned}$	We d	Thu	Fri	Sat
Python Day								
Number		6	0	1	2	3	4	5
If March 1 is Mon			1	2	3	4	5	6
		7	8	9	10	11	12	13
	DST starts	14						
If March 1 is Tue				1	2	3	4	5
		6	7	8	9	10	11	12
	DST starts	13	14					
If March 1 is Wed					1	2	3	4
		5	6	7	8	9	10	11
	DST starts	12	13	14				
If March 1 is Thu						1	2	3
		4	5	6	7	8	9	10
	DST starts	11	12	13	14			
If March 1 is Fri							1	2
		3	4	5	6	7	8	9
	DST starts	10						
If March 1 is Sat								1
		2	3	4	5	6	7	8
	DST starts	9						
If March 1 is Sun		1	2	3	4	5	6	7
	DST starts	8	9	10	11	12	13	14

The start of Eastern Standard Time

 is the first Sunday in November

