

The countdown system description. 4/21/24

The purpose is to display the date, time, the departure times of the trains scheduled for the day
and the status of the next train. If and when the train will be boarding and the minutes until the
train will depart.
The program runs on a Raspberry Pi Zero.
The train times come from an EXEL file derived from the EXEL workbook used to generate the
Dispatcher’s Reports. The worksheet in this workbook named Trains contains the schedule for
the operating season.
The latest version will play audio announcements which can be fed to the mixer in the yard
office. To access the audio, a Pi-2 or Pi-3 will be needed.

Things to know:

The original version was designed to run on a 3.5 inch monitor in full screen mode.
It is running on a 12” monitor with a magnification of 2.7 in Non-Full screen mode.
To run in magnified mode launch to program and add a space for the magnification argument.
If there is no argument it defaults to 1.
The program launches automatically when power is applied.
The autoexec.sh Linux shell script is run when power is applied. This launches the program.
Take note that the x versions of the programs run the NON-Full screen versions.

It contains the following three lines:

cd countdown
python countdownx.py 2.7
python no_trainsx.py 2.7

If there are no trains scheduled for the day, another program runs: no_trainsx.py.
This program displays the next four ride days:

Revisions:

4/21/24 rotate26.py
Properly aligned the text of the rotated images.

Changed the offsets for the three field lines from the integer of the length of the text times the
cpl, which was an approximation, to the size of the surface which was made from the text.
The surface.get_size() function returns the width and height of the surface.
The surface.get_size()[1] functions returns the height of the surface.
Approximation:
 screen.blit(display1ar,(int(m*(240)),int(m*leftoffset)-offa-int(m*len(display1a)*cpl))) #### (H,V) NEXT RIDE

Actual
 screen.blit(display1ar,(int(m*(240)),int(m*leftoffset)-offa-display1ar.get_size()[1])) #### (H,V) NEXT RID

Changed offc, the offset for the days out from 330 to 355.

4/9/24 rotate25.py

The length and width variables were created to set the screen size in pygame. They were set to
960 x 528. This made the full screen version fit into a 27-inch monitor when magnification
equals 2. In the countdown folder, enter python rotate25.py 2 to run the program.

The cpl variable was created to change the characters per line used in the next trains display.
It was set to 10. It is used to determine the length of the surface created by the text. Since it is
only an approximation there is an issue of the location of some of the text that still has not been
resolved.

It also created the leftoffset variable and set it to 510, instead of 490 to center the display in
full-screen mode. The leftoffset variable is used in the rotate section for example:
 screen.blit(texta,(int(m*(170)),int(m*.5*(leftoffset-len(display)*(cpl))))) #### (H,V)

4/7/24 rotate22.py
Added text. Need to change size of version and fix offsets for next trains.

The text was taken from the triangletrain.com website.
The text must be gray characters on a black background

In MS-WORD make text 21 characters per line
Copy text to DesignCad. Fix any spacing errors
Make box around characters.
Move box to new location.
Use Draw, Hatch fill with Black.
Make Text a Group
Make Copy and move to new location
Make Text Color 250,250,250
Move over black background
Zoom to full screen
Copy this to MS-PAINT
Save as info.png

Program code added

 info = pygame.image.load('info.png').convert() ##Makes surface

 new_size_info = (int(m*470),int(m*470)) ## Makes full size
 info = pygame.transform.scale(info,new_size_info) ##Scales the surface to full size
 infor =pygame.transform.rotate(info,90) ## Rotates Surface

 screen.blit(infor,(int(410*m),1)) # Displays Surface

The display above was launched by python rotate22.py 1.9

4/5/24 rotate20.py
To display a rotated surface on the screen:

1- A font must be defined:

2- The text must first be converted to a surface:

3- The surface must be rotated:
 display1ar = pygame.transform.rotate(display1ar,90)

4- The surface must be located in the screen:

(

In 1- the font style is defined and the size is 20
In 2-, the surface is defined, based on the text and the color is set to GRAY2
In 3-, the surface is rotated 90 degrees.
In 4-, it is positioned 270 pixels from the left edge and 490 lines down from the top less the
offa and the length of the text, times 10 pixels per letter.

This version added the 4 next ride days. There is an error in the positions of the displayxbr.
This is caused by the len(displayxb) function. The length was estimated as 10 pixels per letter.
This is an approximation. What is needed is the exact length or size of the surface displayxbr.
This was not a problem with non rotated surface because the position is the top left corner of
the surface,

3/31/24 Rotate 14

This is the display from python rotate14.py

This is the display from python rotate14.py 2.1

To rotate the text:

1- Define the textxx
2- Render the textx
3- Rotate the textx

4- Screen.blitt the textx

For the timee display, the -100 is a fudge!

3/24/24
Rotate 10 began adding lines. Must do timee

3/23/24
For the rotated panel:
The screen is

3/22/24 Rotating the panel. rotate8.py

The screen size is: pygame.display.set_mode((int(m*1800),int(m*490)),0,32) ## sets full
screen
1800X490 lines
Wth the character size, there are 48 characters per width.

So the offset to center the text is 0.5*(490-10*len(text))

Or .5*(width-Characters_per_width*len(text))
screen.blit(text, (int(m*(50)),int(m*.5*(490-len(Top_date)*(10))))) #### (H,V)

width = 490
characters_per_width = 10

The maximum magnification is 2.2. That fills the screen of a 16:9 momitor
This is the display with a magnification of 1.

i z

A system font was added font = pygame.font.SysFont('Calibri', 20, True, False)

to make : text = font.render(Top_date, True, BLUE) work.

3/22/24 Version no_trains8-5-4x.py added QR code to the display.

3/19/2024

Version countdown8-1x.py added variables play1 through play4 and plays the short audio
tracks.

Playback time Audio track name
 16 1.mp3
 11 2.mp3
 6 3.mp3
 2 4.mp3

These are initially set to False. As each audio track is played, they are set to True so that the
tracks will play only once. When the time of departure is less than 1 minute, they are all set
back to False.

 if tmin[tr]-tnow == 16 and play1 == False:
 play1 = True
 os.system('omxplayer audio_tracks/1.mp3')
 elif tmin[tr]-tnow == 11 and play2 == False:
 play2 = True
 os.system('omxplayer audio_tracks/2.mp3')
 elif tmin[tr]-tnow == 6 and play3 == False:
 play3 = True
 os.system('omxplayer audio_tracks/3.mp3')
 elif tmin[tr]-tnow == 2 and play4 == False:
 play4 = True
 os.system('omxplayer audio_tracks/4.mp3')
 else:
 if tmin[tr]-tnow <2:
 play1 = play2 = play3 = play4 = False

3/18/23
Version countdown8-1x.py added playing audio clips before the train departs. The audio clip
must be greater than 60 seconds otherwise the clip will repeat. It also stops updating the clock
during that time. A better solution is to not replay the clips.
The mp3 audio clips must be in the /home/pi/countdown/audio_tracks folder. They will be
played at 16, 11, 6 and 2 minutes before scheduled departures so that they do not coincide with
the same audio tracks played on the train.

Playback time Audio track name

 16 1_1-minute.mp3
 11 2_1-minute.mp3
 6 3_1-minute.mp3
 2 4_1-minute.mp3

3/16/23
Version countdown7-3-2x.py added military time. Variable timeem and show_timeem()

3/15/23
Version countdown7-3-1x.py fixes problem with theme display.
The next version will add audio pre-departure clips. This will have to be developed on a Pi-3.
The Pi-5 has no audio and does not support omxplayer.

3/12/24
The system will sort of run in windows. The format for the variable timee had to be changed to
‘%H:%M:%S’ because windows did not support the strftime format.
 #timee = ' '+now.strftime('%-I:%M %p')
 timee = ' '+now.strftime(‘%H:%M:%S’)

The files are countdownwinx7-3.py and no_trainswinx9-5-3.py

BUT: It crashes if anything else is moved on the screen.

3/9/24

For the monitor in the yard office, the magnification is 2.7.
The autoexec.sh file is

pi@raspberrypi:~ $ cat autoexec.sh
cd countdown
python countdownx.py 2.7
python no_trainsx.py 2.7

Added magnification to countdown cntdwn7-3x.py.
This version does not display the theme and does not center the logo properly

Note that version cntdwn7-3-1x.py changed the logo file name to nhvrr_logo.jpg which is installed in
yard office.

2-20-24

When the magnification was added, the graphic nhvrr350.jpg gets raggedy.
In version 9-5-3, the logo was changed from using the nhvrr350.jpg to logo_1450x164.jpg.
This was then reduced by a factor of .241 to fit into the 480x320 3.5” display.
350/1450 = 0.241

The logo_1450x164.jpg was created in DesignCad and copied to Draw where is was resized
and saved as a jpg file.

pygame.display.set_caption(str(script)+' '+ ver) # Title of window
ball = pygame.image.load('logo_1450x164.jpg').convert()

new_size = (int(m*.241*1450),int(m*.241*164))
ball =pygame.transform.scale(ball,new_size)###

In version 9-5-2, the magnification variable was changed from an integer to floating point. This
makes it possible to magnify the display to any desired size. It required that wherever m was
used the int(m*x) had to be changed.

In version 9-5-1, the capability to magnify the display was added. The magnification can be
changed by adding it when launching the program. To start the program, at the command line

enter python no_trains9-5-1x.py m. Where M is the magnification. If m is not added the
default is 1, which is 480x320, for the 3.5” display. M must be an integer.

For example: To triple the size, at the command line, enter: python no_trains9-5-5x.py 3.
The function
The argument argv argv[0] is the name of the file. The first argument argv[1] is the first
argument that is passed to the program.
In this case argv[1] is the magnification that is desired. Since it is formatted as text, the
int(argv[1]) converts it to an integer.

The code added is:

try: # Sets m = 1 if no data is available to pass
 m=int(argv[1]) # Magnification of the images
except:
 m=1

Added variable m to magnify the images, no_trains9-5x.py. The variable m must be an integer.
If m = 1, the image size is correct for the 5.5” display ie. 480x320.
Offsets: offa, offb and offc etc

The best way to do this is to add the variable to the program on boot up ie no_trains.py,m.
Or, store the value of m in a text file mag.txt and have the program open this file if it exists and
get the value.

This modification as only made for the no_trains, not countdown.

NOTE: The date format MUST be in the form dd/mm/yyyy and the time format must be capitol
AM and PM.
This can easily be changed in EXEL.

This file must be installed in the folder that contains the countdown.py program once a year and
update if there are any changes.

The system requires a WiFi network in order to set the clock to real time.

A feature was added that will play announcements automatically to alert passengers of the
status of the next train ride.

Other than the above conditions, the system runs autonomously.

Just apply power to the system. No other user interaction is required.

The system can run continuously. The startup script, autoexec.sh, runs the countdown.py
program. This program searches the schedule.csv file for the days date. If there are no trains
scheduled for the day, the program ends. The script then runs the no_trains.py program. This
program searches the schedule.csv file to find the next scheduled ride day. If this an Operate-A-
Loco, it display both the Operate-A-Loco and the next ride days date and starting time.

When the time = 00:00:01, whichever program is running will cause the system to reboot to
load the schedule.csv file and start the process again.

Each program will also write to the bootlog.txt file, the file name and the time the system was
rebooted.

This is the autoexec.sh file:

cd countdown
python countdown.py
python no_trains.py

When the autoexec.sh Linux shell script is launched on powering up the Rasp Pi, it runs the
countdown.py and the display is shown below:

If there are no trains scheduled for the day, the program crashes and the autoexec.sh script runs
the no_trains.py program and the display is shown below:

At midnight the Rasp Pi is rebooted to reload the schedule and determine if there are train rides
on that day.

bootlog.txt

 schedule.csv
 NOTE: The date format MUST be in the form dd/mm/yyyy and the time format must be
capitol AM and PM.
This can easily be changed in EXEL.

The system displays the boarding time. The trains will board 15 minutes before their departure
time. The system will dis
The system displays the boarding time. The trains will board 15 minutes before their departure
time. The system will dis

NOTE: The files that end in x, such as no_trains7-5-3x.py are not FULLSCREEN versions. The
line below is commented out to inhibit full screen.
##DISPLAYSURF = pygame.display.set_mode((480, 320), pygame.FULLSCREEN)
This is necessary during testing otherwise the Pi would have to be rebooted to make any
changes.

no_trains2.py adds bootlog.txt
Version 323 adds bootlog.txt

Version 322 repairs the issue at the departure time and the next train boarding time.

The countdown_big.py version increases the display by a factor of 4.
The magnification variable m was added and set to 4.
The logo file nhvrr350.jpg was fuzzy when scaled up so a new logo was created to make the
image sharper, nhvrr_logo.jpg.

This was too large and had to be scaled down by half in the pygame window

#######################################
image = pygame.image.load("nhvrr_logo.jpg") width
= image.get_rect().width height =
image.get_rect().height

image = pygame.transform.scale(image, (int(width*.5), int(height*.5)))

Test file in c:\Python27\cd1.py

Shows train departure times in seconds from mid night
The file cd11.py displays all trains and there difference between time now and departures

Note: To transfer files from the Raspberry Pi with the 3.5 inch tft display you must reboot
the system using ./hdmi.

Otherwise, you cannot move the window to display the dropdown menu.

Then reboot the system using ./tft

Countdown system for the Ticket Office

The count down system displays the date, the current time and the times the trains will depart .

It also displays the boarding time and the departure time of the next train leaving Bonsal

The system determines the date and time through its connection to the local area network
through its Wi-Fi connection

Section 1: imports the necessary routines.

Section 2: Functions needed.:

1. convert24()
This converts the time in the form 9:30 AM or 9:30 PM to military time, ie 24hr time.
9:30 AM  0900 and 9:30 PM  2130

2. convert_to_min()
This converts the time in hh:mm:ss into minutes from midnights

Section 3: imports the data found in the 202X Trains EXEL file. The schedule work sheet is
exported as a csv file. The file name is schedule.csv. The data is imported into the program as
an array.
It also formats the time data to display on the monitor.

The next section searches the array for the current day’s schedule and formats it for the display.

Section 4: Changes the string data from the array to seconds from midnight. Each of the train’s
departure times are converted to an integer which is number of seconds from midnight.

Section 5: Searches the imported array data for today’s train schedule.

The next section sets up the video display using pygame

Section 6: The last section is the while loop that updates the screen.

Functions:

Convert24()

This function converts the time information from the schedule.csv file military time. The .csv
file has the departure time information in the form of:
 9:15 AM or 3:30 PM
The output of this function is 0915 and 1530.
The first part finds the colon and adds a 0 if needed.
If meridian = AM and the hour is not 12

8/3/23 The no_trains6.py program was modified to show the next schedule train ride day.

8/6/23

Since the Operate A Local ride days have no passengers, if that is the next ride day, I added the
following ride day as the next ride.I also added OAL to the display.

no_trains7-1.py This version added:

 The AOL line on dislpayd.
 The number of trains and time of first train

It moved the displayc down to make room for displayd.

def show_displayc(message):

 font = pygame.font.Font(None,30) text =
font.render(message, 1,(200,200,200))
screen.blit(text,(30,260)) ### Hor.Vert

def show_displayd(message):

 font = pygame.font.Font(None,30) text =
font.render(message, 1,(200,200,200))
screen.blit(text,(100,240)) ### Hor.Vert

The following code creates the OAL displayd, in version 7-1

display = " There are no trains scheduled today." displayb =
' The next train rides are scheduled for' print ('Theme for
nexttrain ' +stheme[nexttrain]) if stheme[nexttrain]
=='Operate-A-Loco':
 displayd = sdow[nexttrain] +' '+sdate[nexttrain]+ ' '+stheme[nexttrain]
nexttrain = nexttrain+1 else:
 displayd = ' '
 displayc = sdow[nexttrain] +' '+sdate[nexttrain]+' ' +snot[nexttrain]+' Trains starting at '
+strain1[nexttrain]
 if snot[nexttrain] == '1': ## if there is only one train displayc = sdow[nexttrain] +'
'+sdate[nexttrain]+' ' +snot[nexttrain]+' Train at ' +strain1[nexttrain]

 nexttrain = nexttrain -1 ## resets nexttrain Do not know why it is necessary!

8/12/23
This is the display from no_trains7-5.py showing the names for the display variables.

timee = ' '+now.strftime('%-I:%M %p') display = " There are no trains scheduled today." displayb = ' The
next train rides are scheduled for' print ('Theme for nexttrain ' +stheme[nexttrain])

displayd = sdow[nexttrain] +' '+sdate[nexttrain]+ ' '+snot[nexttrain] + ' Trains starting at '
+strain1[nexttrain] if stheme[nexttrain] ==
'Operate-A-Loco':
 displayd = sdow[nexttrain]+': '+stheme[nexttrain] +' NO Passengers' elif
snot[nexttrain] == '1':
 displayd = sdow[nexttrain]+' '+sdate[nexttrain][0:4]+ ': '+snot[nexttrain] + ' Train at '
+strain1[nexttrain] else:
 displayd = sdow[nexttrain]+' '+sdate[nexttrain][0:4]+ ': '+snot[nexttrain] + ' Trains starting at ' +strain1[nexttrain]

displayc = sdow[nexttrain+1] +' '+sdate[nexttrain+1][0:4]+' ' +snot[nexttrain+1]+' Trains starting at '
+strain1[nexttrain+1] if stheme[nexttrain+1] ==
'Operate-A-Loco':
 displayc = sdow[nexttrain+1]+' '+sdate[nexttrain+1][0:4] +': '+stheme[nexttrain+1] +' NO Passengers' else:
 displayc = sdow[nexttrain+1] +' '+sdate[nexttrain+1][0:4]+' : ' +snot[nexttrain+1]+' Trains at ' +strain1[nexttrain+1]

8/15/23 no_trains7-5-3.py makes the time display large.

To make changes to the program:

Make the changes in the Pi 3 countdown4 folder.
Copy the new file to the PC Desktop using VNC.

 For example no_trains7-5-3.py
Reboot the Pi Zero and stop the autoexec.sh using Ctrl-c.
Up load the new file using VNC. It automatically goes to the Desktop of the Pi Zero. Copy the file
to the countdown4 folder

 cd Desktop
 cp no_trains7-5-3.py /home/pi/countdown4/no_trains7-5-3.py

Now copy the filename.py file to the main file cd
countdown4

 cp no_trains7-5-3.py no_trains.py
 Reboot the Pi Zero.

